
Ranadheer Kumar M1, Laxminarayana E2*, Vasudha M3

1Kakatiya Institute of Technology & Science, Hasanparthy, Hanamkonda-506015 (Telangana) India.
2Sreenidhi Institute of Science and Technology, Yammampet, Ghatkesar, Hyderabad-500 301, (Telangana) India.
3CKM Arts & Science College, Deshaipet, Warangal, Telangana 506006 (Telangana) India.
Mail ID: randheer_kitsw@yahoo.co.in

6-Chloro-2-methoxy-7-(trifluoromethyl)imidazo[1,5-a]pyrido[3,2-e]pyrazine has been synthesized and characterized as both potent and selective phosphodiesterase 10A (PDE10A) inhibitors. In accordance with the known antipsychotic potential of PDE10A inhibitors, MK-801 induced stereotypy and hyperactivity in rats were reversed by selected compounds. Thus, a promising compound class has been identified for the treatment of schizophrenia that could circumvent side effects connected with current therapies. The compounds were characterized by spectral analysis.

Introduction
Several pyrazole derivatives received great attention due to their biological and pharmacological activities not only as potential inhibitors of HIV-1, pesticides, fungicides, antihypertensive agents and anticancer activity, but they are also important and useful starting materials for the synthesis of other fused heterocyclic systems. Furthermore, compounds containing the pyrimidine nucleus are of significant biological importance and used as antibacterial, antifungal, antitumour, antiviral, anti-inflammatory and antihypertensive agents. In this work, we synthesized 6-chloro-2-methoxy-7-(trifluoromethyl)imidazo[1,5-a]pyrido[3,2-e]pyrazine.
Experimental section

Thin layer chromatography was run on silica gel-G and visualization were done using UV light or iodine. 1H –NMR spectra were recorded with a Varian Mercury plus 400 MHz instrument in DMSO-d_6 / CDCl$_3$ solvent using trimethylsilane as internal standard. By Jeol-JMS D-300 spectrometer, mass spectra were recorded. Starting materials which were used in this chapter were obtained by commercial sources and used as such.

Ethyl-1-(6-methoxy-3-nitropyridin-2-yl)-4-(trifluoromethyl)-1H-imidazole-5-carboxylate (2)

Ethyl-4-(trifluoromethyl)-1H-imidazole-5-carboxylate (I) and 2-Chloro-3-nitro-6-methoxypyridine (0.01 mole) was dissolved in DMF (25 mL). To this freshly powdered KOH (0.01 mole) was added and heated to 80 °C for overnight. After completion of reaction (monitored by TLC), the solvent was completely distilled off and diluted with water then extracted with ethyl acetate. The separated the organic layer, dried over Na$_2$SO$_4$ and concentrated under vacuum to afford crude compd-2. The crude compound was purified by column chromatography over silica gel (60-120 mesh) using 6% ethyl acetate in pet ether.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.39$ (d, 1H), 7.90 (s, 1H), 7.02 (d, 1H), 4.20 (q, 2H), 4.00 (s, 3H), 1.28 (t, 3H).

MS: m/z 361 (m+1).

2-methoxy-7-(trifluoromethyl)imidazo[1,5-a]pyrido[3,2-e]pyrazin-6(5H)-one (3)

Ethyl-1-(6-methoxy-3-nitropyridin-2-yl)-4-(trifluoromethyl)-1H-imidazole-5-carboxylate (2) (0.01 mole) was dissolved in acetic acid and added water (50mL) followed by sodium dithionite (0.07 mole). The reaction was heated to 100 °C for overnight. The reaction mass was cooled to room temperature and then diluted with water. The solid product was filtered and washed with water followed by hexane to afford compound 3.

1H NMR (400 MHz, DMSO-d_6): $\delta = 11.89$ (brs, 1H), 9.00 (s, 1H), 7.65 (d, 1H), 7.00 (d, 1H), 4.01 (s, 3H).

MS: m/z 285 (m+1).

6-chloro-2-methoxy-7-(trifluoromethyl)imidazo[1,5-a]pyrido[3,2-e]pyrazine (4)

2-Methoxy-7-(trifluoromethyl)imidazo[1,5-a]pyrido[3,2-e]pyrazin-6(5H)-one (3) (0.01 mole) was suspended in POCl$_3$ 35 (mL) and was heated to 110 °C for 24 h. Excess POCl$_3$ was distilled off under reduce pressure then quenched with ice and neutralized with solid
NaHCO₃. The resulting solids were filtered. The crude compound was purified by column chromatography over silica gel (60-120 mesh) using 6% ethyl acetate in pet ether.

\[^1H \text{NMR} (400 \text{ MHz}, \text{DMSO-}d_6): \delta = 9.12 \text{ (s, 1H), 7.73 (d, 1H), 7.02 (d, 1H), 4.06 (s, 3H) } \]

MS: m/z 302 (m+1).

\[
\text{MeO} \quad \text{N} \quad \text{N} \quad \text{Cl} \quad \text{CF}_3
\]

Anti-inflammatory activity

Compound 1 to 5cox – OXIDOREDUCTASE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.09 kcal/mol</td>
<td>1.01 mM</td>
<td>-4.65 kcal/mol</td>
<td>-0.06 kcal/mol</td>
<td>-4.72 kcal/mol</td>
<td>50%</td>
<td>433.286</td>
</tr>
</tbody>
</table>
Decomposed Interaction Energies in kcal/mol

<table>
<thead>
<tr>
<th>hydrogen bonds</th>
<th>halogen-bond</th>
<th>polar</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>SER38 (0)</td>
<td>PRO40 (0)</td>
<td>ASN68 (0)</td>
<td>GLU67 (0)</td>
</tr>
<tr>
<td>TYR55 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interaction Table

<table>
<thead>
<tr>
<th>hydrogen bonds</th>
<th>polar</th>
<th>hydrophobic</th>
<th>pi-pi</th>
<th>halogen-bond</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3 (10)</td>
<td>SER3</td>
<td>C7</td>
<td>PRO4</td>
<td>CI1</td>
<td>SER38</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(9)</td>
<td>(0)</td>
<td>(15)</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>(CB,</td>
<td>[3.73]</td>
<td>[3.73]</td>
<td>[3.57]</td>
<td>(CB)</td>
</tr>
<tr>
<td></td>
<td>OG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 (4)</td>
<td>TYR5</td>
<td>C2</td>
<td>TYR5</td>
<td>CI1</td>
<td>SER38</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(2)</td>
<td>(5)</td>
<td>(15)</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>(OH)</td>
<td>[3.68]</td>
<td>[3.68]</td>
<td>[3.57]</td>
<td>(CG)</td>
</tr>
<tr>
<td>N4 (7)</td>
<td>TYR5</td>
<td>C11</td>
<td>TYR5</td>
<td>F1</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(20)</td>
<td>(5)</td>
<td>(17)</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(CE1,</td>
<td>[3.67]</td>
<td>[3.67]</td>
<td>[3.42]</td>
<td>(CE1)</td>
</tr>
<tr>
<td></td>
<td>CZ,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 (12)</td>
<td>TYR5</td>
<td>C3</td>
<td>TYR5</td>
<td>C1</td>
<td>SER38</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(3)</td>
<td>(5)</td>
<td>(1)</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td>(CE1,</td>
<td>[3.33]</td>
<td>[3.33]</td>
<td>[3.70]</td>
<td>(OG)</td>
</tr>
<tr>
<td></td>
<td>CE1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4 (12)</td>
<td>ASN6</td>
<td>C1</td>
<td>TYR5</td>
<td>C5</td>
<td>SER38</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(1)</td>
<td>(5)</td>
<td>(6)</td>
<td>(OG)</td>
</tr>
<tr>
<td></td>
<td>(ND2)</td>
<td></td>
<td>(CE1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

In summary, we have developed a simple, efficient procedure for the synthesis of 6-chloro-2-methoxy-7-(trifluoromethyl)imidazo[1,5-a]pyrido[3,2-e]pyrazine. The synthesized compounds were characterized by spectral analysis.

References

IV. A. A. Aly, *Phosphorous, Sulfur and Silicon and the Related Elements*, 2006, 181,
2395-2409.

Received on March 6, 2019.