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Introduction 

The oxygen- and sulfur-heterocycles are crucial compounds due to their medicinal activities. 

Microwave-mediated preparation of O-heterocycles and S-heterocycles is an important 

objective. Many of these reactions are environmentally benign, fast, high yielding and 

economical. For simplicity, no structures of the compounds are given in this perspective. All 

references for the synthesis of oxygen and sulfur-heterocyclic compounds are mentioned. In 

continuation of our diverse research program, we have identified numerous methods for 

publications in journals and books. We believe readers will find the strategy useful as 

described herein in their research program. This type of style may open up a new possibility 

of publishing papers in a concise way.  

Oxygen-containing molecules 

A few oxygen-containing molecules are mentioned here. Xanthenes are important 

compounds [1]. For example, benzoxanthenes have anticancer [2], antibacterial [3], and 

glycoprotein inhibiting properties [4].  Xanthenes are also used in laser methods [5], 

fluorescent materials [6] and dyes [7]. 

Ashok et al. described a route for the synthesis of pyranoxanthenes using a one-pot multi-

component reaction [8]. The reaction of aromatic aldehyde, substituted chroman-7-ol, and 

cyclohexanedione was conducted in a microwave in the presence acetic acid.  It was shown 

that microwave heating was the best choice for this purpose.  These compounds were tested 

for antimicrobial and antioxidant properties. A few molecules demonstrated good 

antibacterial properties. The nitro compound showed good antibacterial activity. 

An efficient method for the synthesis of octahydroxanthene by condensation of dimethyl-

cyclohexanedione and aldehyde in the presence of an ionic liquid using microwave was 

conducted [9]. 

Chavez et al. studied microwave-medaited bismuth triiodide-mediated synthesis of 

octahydroxanthenes [10].  Microwave-assisted reaction of cyclohexanedione with aldehyde  

in the presence of bismuth salts was performed. Other bismuth (III) salts were tested.  

Bismuth nitrate, bismuth halides, bismuth oxide, and bismuth subnitrate were used. Bismuth 

iodide produced the best yields.   
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Furans have numerous medicinal properties: anticancer, antibiotics, antifungal, 

antidepressant, and pain killing. Ashok et al. synthesized a few chroman-4-one fused 

benzofurans through a cyclization method in a microwave [11]. Chalcone on ring cyclization 

with butanone produced  benzofuran.  These molecules were tested to find their in vitro 

antibacterial activity against two Gram-positive bacteria (Staphylococcus aureus and Bacillus 

faecalis) and two Gram-negative strains (Escherichia coli and Klebsiella pneumonia). Two 

compounds showed antibacterial properties. These compounds were tested for antifungal 

activity against pathogenic fungi (Fusarium oxysporum and Aspergillus flavus) and the 

results are impressive. 

Microwave-mediated procedure was employed for a one-pot method for the synthesis of 

isobenzofuran-ones with sulphamic acid [12]. Isobenzofuran-one was synthesized using 2-

carboxybenzaldehyde and many ketones. A reaction of 2-carboxybenzaldehyde, ketone  and 

sulphamic acid on irradiation by microwave produced the pure compound. 

The microwave-induced one-pot procedure between furan and furanone  were conducted by  

triethyamine-mediated cascade reaction of furan, benzofuran carboxylic acids and 

cyanopropargylic alcohols [13]. The product furanone was obtained. The reaction failed to 

proceed without Et3N or other tertiary amines. 

An aurone has a benzofuran connected to a benzylidene system in position 2.  Aurones have 

many medicinal activities as antioxidant [14], antitumor [15, 16], antiparasitic [17, 18] 

antiviral, antidiabetic [19], neuroprotective [20], CDK1 inhibitor [21], antinociceptive [22], 

antimutagenic [23], antioxidant [24], and antidiabetic [25, 26]. The microwave-induced 

method for the preparation of 2-arylidene-2H-furo[2,3-f]chromen-3(7H)-ones was reported 

[27]. Microwave-induce Claisen–Schmidt reaction of 1-(5-hydroxy-2H-chromen-6-

yl)ethanone and aromatic aldehydes in presence of  KOH  gave 3-(aryl)-1-(5-hydroxy-2H-

chromen-6-yl)prop-2-en-1-one. These molecules were screened for antioxidant and 

antimicrobial activity. The results showed a high radical scavenging potential and better 

antimicrobial activity than the available compounds in this area.  

The preparation of benzofuran-3(2H)-ones using microwave was investigated by Hu et al. 

[28].  The products were obtained in satisfactory yields.  

5-Ethoxymethylfurfural (EMF) was synthesized from D-fructose in the presence of eutectic 

solvents (DESs) as promoters in a microwave oven [29]. The choline chloride-oxalic acid 

produced the best yield of D-fructose. The reaction of D-fructose with ethanol in the presence 

of DESs gave to 5-Hydroxymethyl furfural (HMF) which on reaction produced 5-

Ethoxymethylfurfural (EMF).  

Coumarin, an important type of organic molecule was first realized by Vogel in 1820 [30, 

31]. In 1868, Perkin prepared coumarin [32]. Many coumarins are medicinally active [33-38].  

Microwave-assisted method was used for the synthesis of cinnamic acid and coumarin [39]. 

The preparation started with an aldehyde as a substrate and a Wittig reagent. A reaction 

between aldehyde and ylide was conducted to prepare cinnamic acid derivatives. Microwave-

induced synthesis of 3-aryl-furo[3,2-c]coumarins was accomplished by two methods [40]. 

Numerous 3-aryl-furo[3,2-c]coumarins were synthesized reacting 4-hydroxy coumarins with 

2-aryl-1-nitro ethenes. A number of 3-aryl-furo[3,2-c]coumarins were synthesized reacting 4-

hydroxy coumarins with aroylmethyl bromides following Feist–Benary‘s method.  

These molecules were screened against Gram-negative bacteria (Escherichia coli), Gram-

positive bacteria (Bacillus subtilis) and fungi Candida albican. The agar cup diffusion 

method was chosen for the determination of the antimicrobial activity. These molecules have 

good activity against Gram-negative bacteria. Importantly, not a single compoundfrom this 

group showed superior activity against Bacillus subtilis and Candida albicans. 
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Osthole, a natural coumarin has antiarrhythmia, antifungal, antidiabetic, antirumor, 

antiinflammatory, antiosteoporosis, hepatoprotection, and neuroprotection activities [41-49]. 

Microwave-assisted synthesis of ostholes by the reaction of 4-hydroxycoumarins and beta-

ketoesters was available [50].  These compounds were screened against six phytopathogenic 

fungi and a few of them showed activity. Many condensed coumarin analogues, pyrano[3,2-

c]chromene-2,5-diones were  synthesized following microwave-induced procedure  [51]. 

These molecules were screened for their antifungal activity. A few of the coumarin 

derivatives have antifungal activities. 

Numerous hydroxycoumarins were synthesized by microwave-assisted process [52]. On 

reaction of coumarins with chloroacetonitrile and potassium carbonate resulted in O-

substituted cyanomethoxy derivatives. The molecules having coumarin and chromene 

systems, called pyranocoumarins are challenging and pyranocoumarins demonstrated anti-

HIV activity. 

Ashok et al. showed the synthesis of this type of compound using microwave-mediated 

process [53].These compounds were screened for their antimicrobial activity.  Some of them 

was active against fungal and bacterial strains. 

Microwave-assisted palladium-induced Heck reaction was conducted on quercetin derivative 

with terminal alkenes [54]. Synthesis of substituted 1,4-dioxines via oxiranes and diazo 

compounds was known. These molecules exhibited urease inhibition and cytotoxic activity.  

Sulfur containing molecules are biologically crucial [55-57]. Microwave-assited parallel 

synthesis of a library of N-aroyl and N-aryl thioureas were performed [58].  

Microwave-mediated copper-assisted ring expansions of heterocycles with diazo-dicarbonyl 

molecules were studied [59]. This method described a simple procedure for the preparation of 

dioxins. Preparation of oxathiines by a ring enlargement of thiiranes  and diazo compounds 

was described.  

 A few thiophene hydrazones were synthesized by microwave-induced method [60]. A few 

chemists prepared sulfanyl-substituted chromenones. Anjaiah et al. demonstrated microwave-

assisted synthesis of 3-arylsulfanyl-chromen-2-ones by condensation of 

arenesulfonohydrazides with hydroxy-chromenone using iodine [61]. These molecules were 

tested for in vitro antimicrobial activity and good results were observed.  

Various 1-(arylthio)naphthalen-2-ols were synthesized by condensation of naphthalen-2-ol  

with diaryldisulfanes  using iodine and microwave [62]. These compounds were tested to 

identify their antibacterial and antifungal properties. 

A microwave-induced method for the preparation of hetaryl and ferrocenyl substituted 

thioketones was described [63]. Microwave-mediated one-pot preparation of oxathiolanes 

was conducted by Kermani [64]. The 2-(nitromethylidene)-1,3-oxathiolane was prepared 

using nitromethane, CS2, oxirane, and Et3N. Some substituted hetaryl thioketones reacted 

with  diazoketones in a microwave [65]. The phenyl(thiophen-2-yl) thioketone on reaction 

with 2-diazo-1,2-diphenylethanone  in the presence of microwave produced 2,4,5-triphenyl-

2-(thiophen-2-yl)-1,3-oxathiole and 3,3,4-triphenyl-4-(thiophen-2-yl)thietan-2-one.  Similar 

studies with ferrocenyl compounds under microwave irradiation were not successful. But, 

these reacted with diazopropanone and 2-diazo-ethanone with LiClO4 to give α,β-unsaturated 

ketones.  

Benzoselenophene moiety is regarded as a bioisoster of benzofuran, naphthalene, 

benzothiophene, and indole system [66]. Benzoselenophenes have received attention because 

of their uses in medicines [67-70]. Arsenyan et al. reported microwave-induced palladium-

promoted cyanation of 3-bromo-2-(1-hydroxyalkyl)benzo[b]selenophenes [71]. The starting 

molecule was activated in a microwave irradiation and catalyst Pd(PPh3)4.  
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Various phosphinic, phosphonic esters, and phosphine oxides were synthesized by P–C-

mediated reactions of aryl- and vinyl halides with phosphites, phosphinates and phosphine 

oxides using microwave [73]. Microwaveinduced method was applied for the synthesis of 

arylphosphonates using cyclodiphosphazane-Pd [74]. Keglevich et al. demonstrated that 

Hirao reaction proceeds with excess P-reagents [75]. Jablonkai and Keglevich showed a 

ligand-free Carbon–Phosphorous coupling method [76]. A reaction of halo benzoic acids 

(iodo and bromo), and diaryl phosphine oxides was conducted in a microwave. Microwave-

assisted preparation of azidoalkylphosphonates  through nucleophilic reaction of the 

bromoalkylphosphonates with sodium azide was reported  [77] .  

An isomerization of 7-substituted cycloheptatrienes was performed with DABCO and t-

BuOK [78]. Following this method, allyltriphenylphosphonium bromide was prepared by 

reaction of triphenylphosphine and allyl bromide.  

The AuNP-supported Gd complex was an effective promoter for the acetylation of alcohols 

and phenol [79]. Microwave-assisted acetylation of alcohols and phenol was performed. 

Microwave-assisted Cannizzaro reaction was reported to convert aldehydes to carboxylic 

acids [80]. A microwave-mediated Claisen-Schmidt method for the synthesis of α,β-

unsaturated ketones was known [81]. The preparation of 2,3-dihydroxypropyl decanoate was 

accomplished by esterification of decanoic acid with glycidol and glycerol carbonate [82]. 

Monoglycerides were synthesized from decanoic acid, and glycerol carbonate or glycidol in 

the presence of TBAI. 

The α-aryl malonates are important for the sythesis of heterocycles [83]. The reaction of 

aromatic halides with diethyl malonate using Cu(OTf)2, Cs2CO3, and 2-picolinic acid was 

performed for this purpose.  

Conclusion 

 The significance of microwave-mediated reactions for the synthesis of numerous organic 

compounds is discussed here. Many microwave-induced processes toward oxygen and sulfur 

molecules are described. These methods have numerous advantages: solvent-free reaction, 

reduction of reaction time, catalytic nature, economical and rapid process. Because of these 

advantages, researchers engaged in drug discovery use microwave-induced procedures.   
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