INDIUM-INDUCED HIGHLY STEREOSELECTIVE THIOGLYCOSYLATION OF PERACETYLATED BROMOGLUCOSE

Susanta Samajdar1, Indrani Banik1 and Bimal K. Banik2*

1Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd. Houston, TX 77030, USA
2Department of Chemistry, The University of Texas-Pan American, 1201 West University Drive, Edinburg, Texas 78539, USA; Phone: 956-665-7841; Fax: 956-665-5006, E-mail: banik@panam.edu

Abstract: A highly stereoselective synthesis of thioglycoside has been accomplished starting from bromo peracetylated glucose and thiol in the presence of indium.

Keywords: Indium, Bromo Peracetylated Glucose, Stereoselective

Introduction: Glycosylation is an attractive area of research because of the complexity of the procedure.1 Therefore, an effective method of glycosylation development is necessary.2 The glycosyl fluoride3a and thioglycoside1 method and Ferrier rearrangement3b are the recognized processes for this purpose. Several Lewis acids4 and acidic support5 have been used successfully. Nonstereoselectivity of the reaction is a major concern to chemists. Attempts have been made to improve the stereoselectivity of these processes.6,7 Our exploration in this field resulted in a convenient method of stereoselective synthesis of β-D-thioglycosides via reaction of thiols with β-D-bromoglucose derivatives mediated by indium metal.8

Results and Discussion: Some of these methods for thioglycosylation have proved to be effective; however, they still have limitations including, lengthy synthesis of the donor or the acceptor, the use of toxic activators and unstable activating agents. Therefore, development of easily accessible, non-toxic, environmentally friendly activators is highly desirable. In this paper, we report a stereoselective synthesis of β-D-glycoside with indium metal. Organometallics, such as zinc, samarium diiodide, and titanium reagents, produced the glycals when treated with β-D-bromoglucoses.
Reaction of thiophenol and methylthiol with 2,3,4,5,6-penta-\(O\)-acetyl-\(\alpha\)-D-glucopyranosyl acetate (1) in the presence of bismuth nitrate using tetrahydrofuran (THF) as the solvent produced glycosides 2 in 80% yield (Scheme 1). The anomeric stereochemistry was determined to be \(\beta\) from the coupling constant of the anomeric hydrogen (7.5-10.0 Hz).

Conclusion: Indium-mediated glycosylation has produced highly stereoselective thioglycoside with aliphatic and aromatic thiols and acetobromoglucose.

Acknowledgements: We gratefully acknowledge the financial support for this research project from National Institutes of Health-SCORE (2SO6GM008038-73) and (NCIP20CA138022).

References: