

Heterocyclic Letters Vol. 8| No.3|641-646|May-July|2018 ISSN : (print) 2231–3087 / (online) 2230-9632 CODEN: HLEEAI http://heteroletters.org

SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDIES OF NEW MANNICH BASE LIGANDS DERIVED FROM ACETAMIDE, ACRYLAMIDE, BENZAMIDE AND PHTHALIMIDE

N.Karikalan^a, L.Muruganandam^{b*}, R.Maheswari^b, S.Selvam^c, A.Lakshmanan^d, and R.Venkatachalam^d

 ^aDepartment of Physics, Hindustan Institute of Technology and Science, Chennai-103.
^bDepartment of Chemistry, Saranathan College of Engineering, Tiruchirapalli-12.
^cDepartment of Chemistry, Sudarsan Engineering College, Pudukkottai-501.
^dDepartment of Chemistry, AVVM Sri Pushpam College, Poondi, Thanjavur-503. Email: <u>Imuruganandam@yahoo.co.in</u> mobile: 9486606545

ABSTRACT

The present work describes the synthesis, characterization and *in vitro* antimicrobial studies of the three component condensation of secondary amines, aldehydes and organic compounds containing at least one active hydrogen atom by Mannich reaction. All the synthesized compounds were characterized by elemental analyses, IR, UV, NMR and mass spectral studies. The antibacterial and antifungal activities were evaluated by agar disc diffusion method. They showed some interesting antibacterial and antifungal activities. The compound *N*-[Morpholino (methyl)]phthalimide, has high antibacterial as well as antifungal activity.

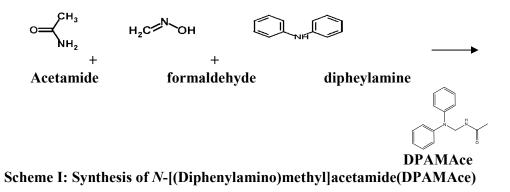
KEYWORDS

Chelation theory, disc diffusion, Mannich condensation, toxicity, immunomodulatory.

INTRODUCTION

Mannich bases are a special class of ligands with a variety of donor atoms exhibiting interesting coordination modes towards various metals^I. The azomethine linkage in Mannich bases is responsible for the biological activities such as antitumor, antibacterial, antifungal and herbicidal activities^{II,III}. Mannich bases have often been used as chelating ligands in the field of coordination chemistry^{IV}. Their metal complexes are found to be of great interest during recent years. It is well known that N, O and S atoms play an important role in the coordination of metals at the active sites of numerous metallobiomolecules^{V,VI}. Among the various classes of nitrogen-containing heterocyclic compounds, amide/imide derivatives are very important in pharmacological activities. In addition, these compounds are also associated with a wide spectrum of biological activities ranging from antitubercular, analgesic, anti-inflammatory, immunomodulatory, antipsychotic and antiallergic activities^{VII-X}. They possess activities as vasopressin antagonistic, vasodilating, hypotensive, inhibiting growth of mesagium cells, water diuretic, platelet agglutination inhibitory activity

L.Muruganandam et al. / Heterocyclic Letters Vol. 8| No.3|641-646|May-July|2018


etc.^{XI-XV}. Here, we report the synthesis, characterization and biological studies of compounds of morpholine, pyrrolidine and diphenylamine with some amide and imide derivatives.

RESULTS AND DISCUSSION

In the present study, seven new heterocyclic compounds have been synthesized by using Mannich condensation reaction^{XVI}. They have a lone pair of electrons in their structures; hence they are called ligands. In general, they have a tendency to form a complex with metal ions. The structures of the newly synthesized heterocyclic compounds have been confirmed by elemental analyses, IR, UV, ¹H &¹³C NMR and mass spectral studies^{XVII}.

General procedure for the preparation of the new heterocyclic compounds

The synthesis of N-[(Diphenylamino)methyl]acetamide is described in **Scheme-I.** N-[(Diphenylamino)methyl]acetamide, N-[(Diphenylamino)methyl]acrylamide N-[Phenyl(pyrrolidin-1-yl)methyl]acetamide, N-[Phenyl(pyrrolidin-1-yl)methyl]benzamide, N-[Morpholino(phenyl)methyl]acetamide, N-[Morpholino(phenyl)methyl]benzamide and N-[Morpholino(methyl)]phthalimide were synthesized by Mannich condensation reaction between acetamide/acrylamide/benzamide/phthalimide, formaldehyde/benzaldehyde and diphenylamine/pyrrolidine/morpholine respectively in 1:1:0.5 mol ratio.

Ethanolic solution of the respective amides/imide was mixed with corresponding aldehydes and amines and stirred in an ice bath. After 10 days, a colourless/yellow coloured solid formed in each case was filtered, washed with water and acetone(Scheme-I). The compounds were dried at 60°C in an air oven and recrystallised from ethanol. All the compounds were insoluble in water, but completely soluble in methanol, ethanol, propanol, butanol, chloroform, carbon tetrachloride, acetone, dimethyl formamide, ether, benzene etc. The elemental analysis and physical data of the synthesized compounds are shown in Table-I.

Table I. Physical and anal	vtical data of the synthesiz	ed heterocyclic compounds

Comp. code	Formula	Mol. wt	M.P (°C)	Yield (%)	Elemental Analysis					
					%C		%H		%N	
					Calc.	Found	Calc.	Found	Calc.	Found
DPAMAce	C15H16N2O	240	110	92	75.0	73.01	6.60	6.19	11.60	11.58
DPAMAcry	C ₁₆ H ₁₆ N ₂ O	252	112	87	76.19	74.35	6.30	6.05	11.11	11.24
PBA	C ₁₃ H ₁₈ N ₂ O	218	120- 124	90	71.60	71.53	8.26	8.31	12.84	12.97
PBB	C ₁₈ H ₂₀ N ₂ O	280	78- 80	96	77.14	76.91	7.14	7.28	10.00	9.06

MBA	$C_{13}H_{18}N_2O_2$	234	148-	91	66.67	66.41	7.69	7.74	11.97	11.65
			150							
MBB	$C_{18}H_{20}N_2O_2$	296	162-	89	72.97	73.05	6.76	6.80	9.46	9.53
			165							
MMP	$C_{13}H_{14}N_2O_3$	246	114-	79	63.41	63.05	5.69	5.61	11.38	11.29
			116							

L.Muruganandam et al. / Heterocyclic Letters Vol. 8| No.3|641-646|May-July|2018

Antibacterial and antifungal studies

The antibacterial and antifungal activities of the synthesized compounds were screened *in vitro* against six bacterial species viz *E.coli*, *P.aeruginosa*, *S.typhi*, *B.subtilis*, *S.pyogenes*, *S.aureus* and two fungal species *A.niger* and *A.flavus* by disc diffusion method^{XIX} using agar nutrient as medium and gentamycin as control. The paper disc containing compound was placed on the surface of the nutrient agar plate, previously spread with sterilized culture of microorganism. After incubating this, at 37°C for 24 hrs, the diameter of inhibition zone around the paper disc was measured.

Spectral data of the synthesized heterocyclic compounds N-[(Diphenylamino)methyl]acetamide (DPAMAce)

FT-IR (KBr v_{max} , cm⁻¹): 3258(NH), 3061(CH-aromatic ring), 2959(CH-aliphatic group) 1637(C=O), 1241 & 1067(C-N-C), 889-622(C-H o.p.b. of aromatic ring), 1360-1067(C-H o.p.b. of aromatic ring), 751(monosubstituted aromatic ring). ¹H NMR (300MHz, DMSO-d₆): δ 8.46(s, NH), 5.06 & 5.05(d, CH₂), 7.30 – 6.96(m, 5H phenyl ring), 1.84(s, CH₃). ¹³C NMR (300MHz, DMSO-d₆): δ 169.60(s, C=O), 146.61 – 120.91(m, 5C, benzene ring), 56.12(s, CH₂), 22.57(s, CH₃). UV-Vis.(DMF): 301(n $\rightarrow\pi^*$), 274($\pi \rightarrow \pi^*$). FABMS: m/z = 240(C₁₅H₁₆N₂O), m/z = 197(C₁₃H₁₃N₂⁺), m/z = 182(C₁₃H₁₂N⁺), m/z = 168(C₁₂H₁₀N⁺).

N-[(Diphenylamino)methyl]acrylamide (DPAMAcry)

FT-IR (KBr v_{max} , cm⁻¹): 3295(NH), 3042(CH-aromatic ring), 2912(CH-aliphatic group) 1655(C=O), 1218 & 1088(C-N-C), 898-689(C-H o.p.b. of aromatic ring), 1383-1088(C-H o.p.b. of aromatic ring), 755(monosubstituted aromatic ring). ¹H NMR (300MHz, DMSO-d₆): δ 8.66(s, NH), 7.31 – 6.92(m, 5H phenyl ring), 6.31(s, vinyl CH), 5.17 & 5.16(d, CH₂), 6.17 & 5.63(d, vinyl CH₂). ¹³C NMR (300MHz, DMSO-d₆): δ 164.78(s, C=O), 146.58 – 120.95(m, 5C, benzene ring), 56.17(s, CH₂), 125.91(s, terminal C of vinyl), 131.45(s, vinyl C with CO). UV-Vis(DMF): 302(n $\rightarrow\pi^*$), 250($\pi\rightarrow\pi^*$). FABMS: m/z = 252(C₁₆H₁₆N₂O), m/z = 197(C₁₃H₁₃N₂⁺), m/z = 182(C₁₃H₁₂N⁺), m/z = 168(C₁₂H₁₀N⁺).

N-[Phenyl(pyrrolidin-1-yl)methyl]acetamide (PBA)

FT-IR (KBr v_{max} , cm⁻¹): 3306(NH), 1646(C=O), 3053, 3035(v_{CH} aromatic), 2971, 2876(v_{CH} alicyclic), 2821(v_{CH} aliphatic), 1149(C-N-C), 1601($v_{C=C}$, v_{C-N}), 1531(δ_{NH} secondary amide), 1029(δ_{CH} i.p.b benzene), 986 (δ_{CH} + o.p.b of pyrrolidine), 879, 851(δ_{NH} wagging and twisting), 732(δ_{CH} o.p.b benzene), 704(o.p.b ring C=C). ¹H NMR (300MHz, DMSO-d₆): δ 8.42(s, NH), 5.86 & 5.83 (d, CH), 7.39 - 7.26(m, CH benzene ring) 2.51(s, N(CH₂)₂ at α, α^1), 1.65(s, (CH₂)₂ at β, β^1). ¹³C NMR (300MHz, DMSO-d₆): 169.62 (s, C=O), δ 141.62-127.68(m, 6C phenyl ring), 49.23(s, pyrrolidine N(CH₂)₂ at α, α^1), 23.59(s, pyrrolidine (CH₂)₂ at β, β^1). UV-Vis.(DMF): 287(n $\rightarrow\pi^*$), 226($\pi\rightarrow\pi^*$). FABMS: m/z = 218 (C₁₃H₁₈N₂O), m/z = 127 (C₆H₁₁N₂O⁺), m/z = 99 (C₅H₁₀N₂⁺), m/z = 70 (C₄H₈N⁺).

N-[Phenyl(pyrrolidin-1-yl)methyl]benzamide (PBB)

FT-IR (KBr v_{max} , cm⁻¹): 3346(NH), 1634(C=O), 3057, 3033(v_{CH} aromatic), 2965, 2873(v_{CH} alicyclic), 2801(v_{CH} aliphatic), 1147(C-N-C), 1578($v_{C=C}$, v_{C-N}), 1515(δ_{NH} secondary amide), 1029(δ_{CH} i.p.b benzene), 930(δ_{CH} + o.p.b of pyrrolidine), 908, 868(δ_{NH} wagging and twisting), 719(δ_{CH} o.p.b benzene), 540($\pi_{C=O}$), 505(o.p.b ring C=C). ¹H NMR (300MHz, DMSO-d₆): δ 8.92(s, NH), 5.86 & 5.83 (d, CH), 7.93 - 7.54(m, 5H amido phenyl ring), 7.48 -

7.25(m, 5H aldehydic phenyl ring), 2.56(s, N(CH₂)₂ at α , α^1), 1.69(s, (CH₂)₂ at β , β^1). ¹³C NMR (300MHz, DMSO-d₆): δ 168.39 (s,C=O), 141.58- 127.75(m, 6C aldehydic phenyl ring), 134.83- 127.95(m, 6C, amido phenyl ring), 70.44(s, methine C), 49.60 (s, pyrrolidine N(CH₂)₂ at α , α^1), 23.71 (s, pyrrolidine (CH₂)₂ at β , β^1). UV-Vis.(DMF): 263(n $\rightarrow\pi^*$), 235($\pi \rightarrow \pi^*$). FABMS: m/z = 280(C₁₈H₂₀N₂O), m/z = 204(C₁₂H₁₅N₂O⁺), m/z = 126(C₆H₁₀N₂O⁺), m/z = 70(C₄H₈N⁺).

N-[Morpholino(phenyl)methyl]acetamide (MBA)

FT-IR (KBr v_{max} , cm⁻¹): 3297(NH), 1647(C=O), 1493, 1449, 1206(CH₂), 1116(C-N-C), 1049, 1034(C-O-C), 749(monosubstituted morpholine). ¹H NMR (300MHz, DMSO-d₆): δ 8.44(s, NH), 5.61(s, CH₂), 7.44 - 7.28(m, 5H phenyl ring), 2.51(m, CH₂)₂), 3.58(m, O(CH₂)₂). ¹³C NMR (300MHz, DMSO-d₆): δ 170.13(s,C=O), 139.71 - 127.76(m, 5C, benzene ring), 66.70(s, O(CH₂)₂), 48.98 (s, N(CH₂)₂). UV-Vis(DMF): 286(n $\rightarrow\pi^*$), 242($\pi\rightarrow\pi^*$). FABMS: m/z = 234(C₁₃H₁₈N₂O₂), m/z = 143(C₆H₁₁N₂O₂⁺), m/z = 114 (C₅H₁₀N₂O⁺), m/z = 86(C₄H₈NO⁺).

N-[Morpholino(phenyl)methyl]benzamide (MBB)

FT-IR (KBr v_{max} , cm⁻¹): 3292(NH), 1637(C=O), 3063, 3030(v_{CH} aromatic), 2962, 2914, 2893(v_{CH} alicyclic), 2852(v_{CH} aliphatic), 1602 (v_{C=C}, v_{C-N}), 1522(δ_{CH2} morpholine ring), 1489, 1447(δ_{NH} secondary amide), 1354, 1330, 1310(v_{CN} mixed with δ_{NH}), 1210(v_{ring}), 1136, 1071(v_{CNC}), 1111(C-N-C), 1024(v_{C-O-C} as + v_{C-O-C} sy morpholine), 1007,948(δ_{CH} +o.p.b morpholine), 915(π_{CH} + δ_{CH} + o.p.b ring), 747-897(δ_{NH} wagging and twisting), 747(δ_{CH} o.p.b benzene ring), 698(o.p.b of ring C=C-H benzene), 634(i.p.b of benzene), 409(o.p.b ring C=C). ¹H NMR (300MHz, DMSO-d_6): δ 8.82(s, NH), 5.93 & 5.90(d, CH), 7.94 - 7.27(m, CH benzene ring) 3.65 (s, O(CH₂)₂ of morpholine), 2.51(s, N(CH₂)₂ of morpholine). ¹³C NMR (300MHz, DMSO-d_6): δ 167.62 (s, C=O), δ 134.73-127.90(m, C phenyl ring), 66.74(s, O(CH₂)₂ of morpholine), 49.33(s, N(CH₂)₂ of morpholine). UV-Vis(DMF): 274(n→π*), 236(π →π*). FABMS: m/z = 296 (C₁₈H₂₀N₂O₂), m/z = 120(C₇H₆NO⁺), m/z = 105(C₇H₅O⁺), m/z = 77(C₆H₅⁺).

N-[Morpholino(methyl)]phthalimide (MMP)

FT-IR (KBr v_{max}, cm⁻¹): 3292(NH), 1637(C=O), 2962(v_{CH} aromatic), 2926, 2881(v_{CH} alicyclic), 2853(v_{CH} aliphatic), 1771(v_{C=C}, v_{C-N}), 1640(δ_{CH2} morpholine ring), 1531, 1507(δ_{NH} secondary amide), 1409, 1397, 1368(v_{CN} mixed with δ_{NH}), 1345(v_{ring}), 1152, 1097(v_{CNC}), 1164(C-N-C), 1097(v_{C-O-C} as + v_{C-O-C} sy morpholine), 1032, 998(δ_{CH} +o.p.b morpholine), 927(π_{CH} + δ_{CH} + o.p.b ring), 785-912(δ_{NH} wagging and twisting), 739(δ_{CH} o.p.b benzene ring), 801, 773(ortho disubstituted benzene), 680(o.p.b of ring C=C-H benzene), 646 (i.p.b of benzene), 421(o.p.b ring C=C). ¹H NMR (300MHz, DMSO-d₆): δ 8.71(s, NH), 7.85 - 7.32(m, CH benzene ring), 4.43(s, CH₂) 3.54(s, O(CH₂)₂ of morpholine), 2.50(s, N(CH₂)₂ of morpholine). ¹³C NMR (300MHz, DMSO-d₆): δ 168.68(s, C=O), δ 134.50-123.13(m, C phenyl ring), 65.94(s, O(CH₂)₂ of morpholine), 50.34(s, N(CH₂)₂ of morpholine). UV-Vis(DMF): 302(n→π^{*}), 282(π→π^{*}). FABMS: m/z = 246 (C₁₃H₁₄N₂O₃), m/z = 202 (C₁₁H₁₀N₂O₂⁺), m/z = 160 (C₉H₆NO₂⁺), m/z = 77 (C₆H₅⁺).

A comparison of diameters of the inhibition zones of the compounds investigated and listed in Table II and III, shows that all the synthesized compounds exhibit satisfactory antibacterial and antifungal activity against all the bacterial and fungal species studied. They have larger diameters of inhibition zones than the control: gentamycin at the same concentration and identical conditions. A possible mechanism of toxicity may be speculated in the light of chelation theory^{XX}. Chelation is the formation of complex with metal ion already present in a membrane of bacteria or fungus. It reduces considerably the polarity of the compound mainly because of partial sharing of its charge with other groups and possible π -delocalization of electron over the compound ring. This increases the liphophilic character of the compound

L.Muruganandam et al. / Heterocyclic Letters Vol. 8| No.3|641-646|May-July|2018

which favours its permeation through lipoid layers of bacteria and fungus membranes. Furthermore, the mechanism of action of the compounds may involve the formation of hydrogen bond through the uncoordinated hetero atoms O, S and N with the active centers of the cell constituents resulting in the interference with the normal cell process. Presence of lipophilic and polar substituents like C=O, NH, etc., are expected to enhance the toxicity.

Compound	pound Escherichia coli		Pseudomonas aeruginosa		Salmonella typhi		Bacillus subtilis		Streptococcus pyogenes		Staphylococcus aureus							
Conc.(µg/disc)	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30	10	20	30
Control	09	11	14	08	10	13	08	09	12	09	11	12	08	11	13	08	09	11
DPAMAce	12	16	21	14	16	20	11	17	23	13	15	19	10	15	22	13	17	20
DPAMAcry	15	19	24	16	20	31	14	19	28	12	18	25	14	19	23	12	18	24
PBA	18	25	31	14	20	28	18	24	36	15	21	23	14	22	31	15	18	25
PBB	20	27	34	15	24	30	18	26	37	17	24	29	16	25	36	17	23	29
MBA	15	24	28	13	20	27	16	22	33	14	18	22	14	19	26	13	18	23
MBB	17	26	30	13	19	28	15	26	35	16	22	28	15	20	27	14	19	28
MMP	27	32	46	23	29	40	26	32	45	19	27	39	21	26	37	20	31	43

Table II Antibacterial activity of the synthesized heterocyclic compounds

Table III Antifungal	activity of the	e svnthesized	heterocyclic compounds
		- ~ ,	

Compound	A. nige	r	-	A. flavus				
Conc. (µg/disc)	10	20	30	10	20	30		
Control	08	09	12	05	08	10		
DPAMAce	11	14	17	13	18	21		
DPAMAcry	12	14	19	15	21	26		
PBA	14	18	25	17	24	30		
PBB	18	26	32	18	23	28		
MBA	13	24	28	15	22	25		
MBB	14	25	29	14	23	30		
MMP	23	31	40	25	34	47		

EXPERIMENTAL

All the chemicals and solvents were of AR grade. Ethanol, methanol and the solvents were dried by the standard procedures^{XVIII}. The elemental analyses were performed using Carlo Erba 1108 elemental analyzer at RSIC, CDRI, Lucknow. IR spectroscopy analyses were recorded on Spectrum-one Perkin Elmer FT-IR spectrometer by using KBr pellets. The UV visible spectra were recorded on a Schimadzu UV spectrometer in the wavelength range 200-800 nm. The ¹H and ¹³C NMR were recorded on a Bruker instrument and on a JEOL-GSX 400 spectrometer. The FAB mass recorded by using a JEOL–GC mate mass spectrometer. The antimicrobial activity was determined with the disc diffusion method.

CONCLUSION

The new heterocyclic compounds synthesized by Mannich synthetic route are obtained in good yield. The structures of the compounds have been confirmed by elemental analyses and

various spectral studies. All the compounds have excellent antibacterial and antifungal activities.

ACKNOWLEDGEMENT

The authors express their sincere thanks to the Management, Secretary and Principal, Saranathan College of Engineering, Tiruchirapalli for providing facilities and motivating them with constant encouragement. The research work was carried out at the Chemistry Department, NIT, Tiruchirapalli with the approval of the Professor and Head. The authors are grateful to Dr.T.Thirunalasundari, Department of Biotechnology, Bharathidasan University, Tiruchirapalli, for helping them to carry out antimicrobial studies at her laboratory.

References

- I. H.Lee, S.Cho, K.Namgoong, J.K.Jung, S.Yang, *Bioorg. Med. Chem. Lett.*, 14, 1235-1237 (2004).
- II. F.Grande, F.Aiello, O.D. Grazia, A.Brizz, i A.Garofalo, N. Neamati, Bioorg. Med. Chem., 15, 288-294 (2007).
- III L.Muruganandam, K.Balasubramanian, M.Ramesh, A.Sebastiyan, Journal of Chemical, Biological and Physical Sciences, 2(3), 1184-1191 (**2012**).
- IV. G.J.P.Filion, S.Zhenilo, S.Salozhin, D.Yamada, E.Prokhortchouk, P.A.Defossez, Mol. Cell. Biol., 26, 169 (2006).
- V. L.Muruganandam, K.Krishnakumar, E-Journal of Chemistry, 9(2), 875-882 (2012).
- VI. U.Pal Chaudhuri, L.R.Whiteaker, L.Yang, and R.P.Houser, Dalton Trans., 38, 1902 (2006).
- VII. L.Muruganandam, K.KrishnaKumar and K.Balasubramanian, Asian Journal of Chemistry-25(4), 2189-2191 (2013).
- IX. L.Muruganandam, K.Krishnakumar, K.Balasubramanian, Chem Sci Trans., 2(2), 379-384 (**2013**).
- X. N.C.Kasuga, R.Yamamoto, A.Hara, A.Amano, and K.Nomiya, Inorg. Chim. Acta., 359, 4412 (2006).
- XI. J.Jiang, X. Tang, W.Dou, H.Zhang, W.Liu, C.Wang, J. Zheng, J. Inorg. Biochem., 104, 583-591 (2010).
- XII. S.Braun, A.Botzki, S.Salmen, C.Textor, B.Bernhardt, S.Dove, A.Buschauer, Eur. J. Med. Chem., 46 (9), 4419-4429 (2011).
- XIII. D.A.Vyas, N. A.Chauhan, A.R.Parikh, Indian J. Chem., 46B, 1699-1702 (2007).
- XIV. S.Jasouri, J.Khalafy, M.Badali, R.H.Prager, S. Afri. J. Chem., 64, 105-107 (2011).
- XV. N.B. Patel, F. M. Shaikh, Saudi Pharmaceutical Journal, 18, 129 (2010).
- XVI. M.Tramontini, L.Angiolini, Tetrahedron, 46, 1791 (1990).
- XVII. M.Li, C.Chen, F.He, Y.Gu, Adv. Synth. Catal., 352, 519 (2010).
- XVII. A.I.Vogel, Quantitative Chemical Analysis, 6th edn., 465 (**2004**).
- XIX. M.Ceylan, H.Gezegen, Turk Chem, 32, 55-61 (2008).
- XX. P.Selvam, P.Rathore, S.Karthikumar, K.Velkumar, P.Palanisamy, S.Vijayalakhsmi, M.Witvrouw, Indian J. Pharm. Sci., 71, 432-436 (**2010**).

Received on April 23, 2018.