SYNTHESIS OF POLYNUCLEAR PYRIMIDINE DERIVATIVES AND THEIR PHARMACOLOGICAL ACTIVITIES

Siddesh M. B, Basavaraj Padmashali*, Thriveni K. S, Sandeep C.,

Department of Chemistry, Sahyadri Science College(Autonomous), Shimoga-577203 Karnataka, India.

Department of Studies and Research in Chemistry, School of Basic Sciences, Rani Channamma University, Belagavi 591 156, Karnataka, India.

basavarajpadmashali@yahoo.com +91-9844218894

Abstract: A series of 2-(4,5-dihydro-3-phenyl-5-(thiophen-2-yl)pyrazol-1-yl)-4-aryl-6-(thiophen-2-yl)pyrimidine 5a–e, ethyl-5-amino-1-[4-aryl-6-(thiophen-2-yl)pyrimidin-2-yl]-1H-pyrazole-4-carboxylate 6a–e and triazolopyrimidine derivatives 7a–e starting from thiophene substituted chalcones. Chalcones 1a–e were cyclised with thiourea in presence of acetic acid to get substituted-pyrimidine-2-thiols 2a–e which on methylation with methyl iodide to give methylated pyrimidine derivatives 3a–e. Compounds 3a–e were refluxed with hydrazine hydrate to afford 4-substituted-2-Hydrazinyl-6-(thiophen-2-yl)pyrimidines 4a–e which on refluxing with (2E)-3-phenyl-1-(thiophen-2-yl)prop-2-en-1-one in presence of acetic acid produced compounds 2-(4,5-dihydro-3-phenyl-5-(thiophen-2-yl)pyrazol-1-yl)-4-aryl-6-(thiophen-2-yl)pyrimidine 5a–e. The compounds 4a–e on treatment with ethyl-(2Z)-2-cyano-3-ethoxyprop-2-enoate yielded ethyl-5-amino-1-[4-aryl-6-(thiophen-2-yl)pyrimidin-2-yl]-1H-pyrazole-4-carboxylate 6a–e. The compounds 4a–e on refluxing with acetic anhydride produced triazolopyrimidine derivatives 7a–e.

Keywords: 2-Acetylthiophene, chalcones, pyrazolopyrimidines, triazolopyrimidines, antibacterial, antioxidant activities.

Introduction: Combination of two or more heterocyclics has been a greater fashion for organic chemists for the synthesis as well as thinking their biological profile. Many of the drugs are more heterocyclic. Similarly, in recent years pyrazolopyrimidines and related fused heterocyclic have been identified as bioactive molecules as CNS depressants, neuroleptics, tuberculostatic and some pyrazole[3,4-d]pyrimidines have been identified as ligands for adenosine receptor. Sedereviciute et al., have reported the synthesis and cardiotonic activity of pyrazolopyrimidines. Apart from the pharmaceutical applications of these molecules, some reports are also available regarding their use in photography. Makino et al., and Nozawa et al., of Fuji Photo Film Co. Ltd., have reported that by incorporation of pyrimidinylpyrazole
into a silver halide emulsion layer has resulted in high gradation and improved preservability of photographs.

The above discussion reveals the importance of pyrazolopyrimidine derivatives as anti-inflammatory\textsuperscript{viii}, anti-bacterial, anti-neoplastic\textsuperscript{ix-xiv}, anti-allergic, anti-hypertensive\textsuperscript{xv}, antimicrobial\textsuperscript{xvi-xix}, anti-viral, anti-epileptic, sedative-hypnotic\textsuperscript{xix,xx}, GSK-III inhibitor and Src kinase inhibitor activity in psychological disorders etc. biologically, pharmacologically and industrially important molecules. In view of these facts it was thought worthwhile to synthesize some pyrazolopyrimidine derivatives in the present investigation.

**Materials and methods:**

All the melting points were determined in an open capillary and are uncorrected. IR spectra were recorded on Bruker alpha FT IR spectrophotometer, $^1$H NMR spectra were measured on Bruker AV 400MHZ using CDCl$_3$ and DMSO as solvent. Chemical shifts are expressed in $\delta$ ppm. Mass spectra were performed on a Joel JMS-D 300 mass spectrometer operating at 70 eV. All the reactions were followed and checked by TLC, and further purification was done by column chromatography. All the reagents used were of AR grade and they were again purified by distillation.

**Results and discussion:**

Pyrimidines 3a-e were prepared by the treatment of 2a-e with methyl iodide in presence of DMF and potassium carbonate. The IR spectrum of 3a exhibited a absorption band at 1645 cm$^{-1}$ due to C=N group and at 827 cm$^{-1}$ due to C-S-C stretching. The $^1$H NMR spectrum of compound 3a showed a singlet at $\delta$ 3.85 due to three protons of OCH$_3$ group and a singlet at $\delta$ 2.17 for three protons of S-CH$_3$ group. Further, it showed a molecular ion peak at m/z 314 in its mass spectrum is in agreement with the structure.

Compounds 3a-e on refluxion with hydrazine hydrate in presence of ethanol produced 4-substituted-2-Hydrazinyl-6-(thiophen-2-yl)pyrimidine 4a-e. The reactions were monitored by TLC. IR spectrum of 4a showed absorption band at 3310 cm$^{-1}$ due to NH group. The $^1$H NMR spectrum showed a singlet at $\delta$ 3.66 due to three protons of OCH$_3$ group and singlets at $\delta$ 2.66 and $\delta$ 4.39 due to NH$_2$ and NH group respectively. Its mass spectrum showed a molecular ion peak at m/z 298 which is in agreement with the structure.

Compounds 4a-e were refluxed with chalcone, (2E)-3-phenyl-1-((thiophen-2-yl)prop-2-en-1-one in presence of catalytic amount of acetic acid produced 2-(4,5-dihydro-3-phenyl-5-(thiophen-2-yl)pyrazol-1-yl)-4-aryl-6-(thiophen-2-yl)pyrimidine 5a-e. The IR spectrum of 5a showed absorption band at 1030 cm$^{-1}$ due to C-O-C group. The $^1$H NMR spectrum showed a singlet at $\delta$ 3.88 due to three protons of OCH$_3$ group and triplet at $\delta$ 2.19 and doublet at $\delta$ 2.78 due to CH and CH$_2$ group respectively.
Compounds 4a-e were treated with ethyl (2Z)-2-cyano-3-ethoxyprop-2-enoate in ethanol medium to afford Ethyl-5-amino-1-[4-(4-substituted)-6-(thiophen-2-yl)pyrimidin-2-yl]-1H-pyrazole-4-carboxylate 6a-e. The IR spectrum of 6a showed absorption band at 3270 cm$^{-1}$ due to NH group and at 1750 cm$^{-1}$ due to C=O group. The $^1$H NMR spectrum showed a singlet at $\delta$ 3.92 due to three protons of OCH$_3$ group and triplet at $\delta$ 1.33 and a quartet at $\delta$ 4.32 due to CH$_3$ and CH$_2$ group respectively. Its mass spectrum showed a molecular ion peak at m/z 421 which is in agreement with the structure.

Compounds 4a-e were refluxed with acetic anhydride in presence of catalytic amount of sulphuric acid afforded 7a-e. The IR spectrum of 7a showed absorption band at 1510 cm$^{-1}$ due to C=N group. The $^1$H NMR spectrum showed a singlet at $\delta$ 3.87 due to three protons of OCH$_3$ group and singlet at $\delta$ 2.33 due to CH$_3$. Its mass spectrum showed a molecular ion peak at m/z 322 which is in agreement with the structure.

The sequence of reactions carried out are depicted in scheme I. Some of the selected compounds were screened for antibacterial activity and antioxidant activity studies, the results are shown in Table-1 and Table 2 respectively.
SCHEME I

KOH/Ethanol

Acetic acid

1,4-Dioxane

DMF/CH3I

K2CO3

Reflux for 6 hours/ Ethanol

Reflux for 7 hours

(CH3CO)2O

Compound R

a  -Ph-OCH3

b  -Ph

c  -Ph-Cl

d  -Ph

e  -Ph
Experimental:

Preparation of 4-(4-Methoxyphenyl)-6-(thiophen-2-yl)pyrimidine-2-thiol 2a:
A mixture of \((2E)-3\text{-}(4\text{-Methoxyphenyl})\text{-}1\text{-}(\text{thiophen-2-yl})\text{ prop-2-en-1-one} \text{ 1a (2.45g, 0.01 mol) and thiourea (0.76g, 0.01 mol) in 1,4-dioxane (10 mL)}\) and a catalytic amount of acetic acid is taken in a round bottomed flask and refluxed for about 24 h. The progress of the reaction is monitored by TLC. The reaction mixture is cooled and poured into ice cold water with stirring. The product is filtered, dried and recrystalised using ethanol. Compounds 2b-e are prepared analogously.

4-(4-Methoxyphenyl)-6-(thiophen-2-yl)pyrimidine-2-thiol 2a:
Solid; (60%); IR (KBr) \(\nu \text{(cm}^{-1})\): 2363 (SH), 1250 (C-O-C); \(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta \text{(ppm)}\): 12.50 (b, 1H, SH), 3.86 (s, 3H, OCH\(_3\)), 7.17-8.19 (m, 8H, Ar-H); Elemental analysis: Calculated (%) for C\(_{15}\)H\(_{14}\)N\(_2\)O\(_2\): C, 60.00; H, 4.66; N, 9.33; Found: C, 59.32; H, 4.58; N, 9.54; MS: m/z 300.

4-Phenyl-6-(thiophen-2-yl)pyrimidine-2-thiol 2b:
Solid; (45%); IR (KBr) \(\nu \text{(cm}^{-1})\): 2375 (SH); \(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta \text{(ppm)}\): 13.10 (b, 1H, SH), 7.02-8.22 (m, 9H, Ar-H); Elemental analysis: Calculated (%) for C\(_{14}\)H\(_{10}\)N\(_2\)S\(_2\): C, 62.22; H, 3.70; N, 10.37; Found: C, 62.28; H, 3.63; N, 10.47; MS: m/z 270.

4-(4-Chlorophenyl)-6-(thiophen-2-yl)pyrimidine-2-thiol 2c:
Solid; (53%); IR (KBr) \(\nu \text{(cm}^{-1})\): 2380 (SH), 790 (CCl); \(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta \text{(ppm)}\): 12.87 (b, 1H, SH), 7.10-8.12 (m, 8H, Ar-H); Elemental analysis: Calculated (%) for C\(_{14}\)H\(_9\)ClN\(_2\)S\(_2\): C, 55.08; H, 2.95; N, 9.18; Found: C, 55.02; H, 2.79; N, 9.11; MS: m/z 305.

4-(2-Chloroquinolin-3-yl)-6-(thiophen-2-yl)pyrimidine-2-thiol 2d:
Solid; (42%); IR (KBr) \(\nu \text{(cm}^{-1})\): 2365 (S-H, SH), 790 (CCI); \(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta \text{(ppm)}\): 12.95 (b, 1H, SH), 7.17-8.10 (m, 8H, Ar-H); Elemental analysis: Calculated (%) for C\(_{17}\)H\(_9\)ClN\(_3\)S\(_2\): C, 57.30; H, 2.80; N, 11.79; Found: C, 57.15; H, 2.85; N, 11.78; MS: m/z 356.

4-(4-Phenoxyphenyl)-6-(thiophen-2-yl)pyrimidine-2-thiol 2e:
Solid; (47%); IR (KBr) \(\nu \text{(cm}^{-1})\): 2360 (SH), 7.16-8.24 (m, 13H, Ar-H); Elemental analysis: Calculated (%) for C\(_{20}\)H\(_{14}\)N\(_2\)OS\(_2\): C, 66.29; H, 3.86; N, 7.73; Found: C, 66.50; H, 3.82; N, 7.83; MS: m/z 362.

Preparation of 4-(4-Methoxyphenyl)-2-(methylsulfanyl)-6-(thiophen-2-yl) pyrimidine 3a:
To a solution of 4-(4-Methoxyphenyl)-6-(thiophen-2-yl)pyrimidine-2-thiol 2a (3.01 g, 0.01 mol) in dimethyl formamide (20 mL), potassium carbonate (2.76 g, 0.02 mol) and methyl iodide (2.84 g, 0.02 mol) is added and stirred for 4 h. Reaction time and completion of reaction is monitored by TLC. Then reaction mixture is diluted with cold water and neutralised by glacial acetic acid. The product is filtered off, dried and recrystalised from ethanol. Compounds 3b-e are prepared analogously.
4-(4-Methoxyphenyl)-2-(methylsulfanyl)-6-(thiophen-2-yl)pyrimidine 3a:
Solid; (75%); IR (KBr) ν (cm⁻¹): 827 (C=S-C), 1297 (C-O-C), 1645 (C=N); ¹H NMR (400 MHz, DMSO-D₆) δ (ppm): 2.17 (s, 3H, S CH₃), 6.64-7.70 (m, 8H, Ar H), 3.85 (s, 3H, OCH₃); Elemental analysis: Calculated (%) for C₁₆H₁₄N₂OS₂: C, 61.14; H, 4.45; N, 8.91; Found: C, 61.71; H, 4.40; N, 8.85; MS: m/z 314.

2-(Methylsulfanyl)-4-phenyl-6-(thiophen-2-yl)pyrimidine 3b:
Solid; (60%); IR (KBr) ν (cm⁻¹): 780 (C-S-C), 1630 (C=N); ¹H NMR (400 MHz, DMSO-D₆) δ (ppm): 2.20 (s, 3H, S CH₃), 6.80-7.88 (m, 9H, Ar H); Elemental analysis: Calculated (%) for C₁₅H₁₂N₂S₂: C, 63.38; H, 4.22; N, 9.85; Found: C, 63.77; H, 4.26; N, 9.70; MS: m/z 284.

4-(4-Chlorophenyl)-2-(methylsulfanyl)-6-(thiophen-2-yl)pyrimidine 3c:
Solid; (47%); IR (KBr) ν (cm⁻¹): 815 (C-S-C), 752 (C-Cl), 1644 (C=N); ¹H NMR (400 MHz, DMSO-D₆) δ (ppm): 2.04 (s, 3H, S CH₃), 7.02-7.12 (m, 8H, Ar H); Elemental analysis: Calculated (%) for C₁₅H₁₁ClN₂S₂: C, 56.42; H, 3.44; N, 8.77; Found: C, 56.15; H, 3.38; N, 8.66; MS: m/z 319.

Preparation of 2-Hydrazinyl-4-(4-methoxyphenyl)-6-(thiophen-2-yl)pyrimidine 4a:
A mixture of compound 4-(4-methoxyphenyl)-2-(methylsulfanyl)-6-(thiophen-2-yl) pyrimidine 3a (3.14 g, 0.01 mol) and hydrazine hydrate (0.96 g, 0.03 mol) in absolute ethanol (15 mL) is refluxed for 6 h. After completion of the reaction, the mixture is poured into crushed ice. The separated solid filtered, dried and recrystallised from ethanol. Similarly, the compounds 4b-e are prepared.

2-Hydrazinyl-4-(4-methoxyphenyl)-6-(thiophen-2-yl)pyrimidine 4a:
Solid; (75%); IR (KBr) ν (cm⁻¹): 3310 (N-H), 1280-1165 (C-O-C); 1611 (C=N); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.66 (s, 2H, NH₂), 4.39 (s, 1H, NH), 6.93-8.40 (m, 8H, Ar-H), 3.66 (s, 3H, OCH₃); Elemental analysis: Calculated (%) for C₁₅H₁₄N₄OS: C, 60.40; H, 4.69; N, 18.79; Found: C, 60.49; H, 4.59; N, 18.85; MS: m/z 298.

2-Hydrazinyl-4-phenyl-6-(thiophen-2-yl)pyrimidine 4b:
Solid; (81%); IR (KBr) ν (cm⁻¹): 3310 (N-H), 1624 (C=N); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.07 (s, 2H, NH₂), 4.41 (s, 1H, NH), 6.85-8.21 (m, 9H, Ar H); Elemental analysis: Calculated (%) for C₁₄H₁₂N₄S: C, 62.68; H, 4.47; N, 20.89; Found: C, 62.55; H, 4.49; N, 20.85; MS: m/z 268.
4-(4-Chlorophenyl)-2-hydrazinyl-6-(thiophen-2-yl)pyrimidine 4c:
Solid; (66%); IR (KBr) v (cm⁻¹): 3325 (N-H), 754 (C-Cl), 1644 (C=N); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.02 (s, 2H, NH₂), 4.43 (s, 1H, NH), 7.10-8.05 (m, 8H, Ar H); Elemental analysis: Calculated (%) for C₁₄H₁₁ClN₄S: C, 55.44; H, 3.63; N, 18.48; Found: C, 55.18; H, 3.57; N, 18.47; MS: m/z 303.

2-Chloro-3-[2-hydrazinyl-6-(thiophen-2-yl)pyrimidin-4-yl]quinoline 4d:
Solid; (64%); IR (KBr) v (cm⁻¹): 3330 (N-H), 1630 (C=N); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.27 (s, 2H, NH₂), 4.22 (s, 1H, NH), 7.01-8.08 (m, 9H, Ar H); Elemental analysis: Calculated (%) for C₁₇H₁₂ClN₅: C, 57.62; H, 3.38; N, 19.77; Found: C, 57.36; H, 3.35; N, 19.67; MS: m/z 354.

2-Hydrazinyl-4-(4-phenoxyphenyl)-6-(thiophen-2-yl)pyrimidine 4e:
Solid; (70%); IR (KBr) v (cm⁻¹): 3310 (N-H), 1617 (C=N); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.35 (s, 2H, NH₂), 4.34 (s, 1H, NH), 7.12-8.45 (m, 13H, Ar H); Elemental analysis: Calculated (%) for C₂₀H₁₆N₄OS: C, 66.66; H, 4.44; N, 15.55; Found: C, 66.22; H, 4.40; N, 15.52; MS: m/z 360.

Preparation of 2-(4,5-Dihydro-3-phenyl-5-(thiophen-2-yl)pyrazol-1-yl)-4-(4-methoxyphenyl)-6-(thiophen-2-yl)pyrimidine 5a:
A mixture of compound 2-hydrazinyl-4-(4-methoxyphenyl)-6-(thiophen-2-yl) pyrimidine 4a (2.98 g, 0.01 mol) and (2E)-3-phenyl-1-(thiophen-2-yl)prop-2-en-1-one (2.14 g, 0.01 mol) in acetic acid (20 mL) is refluxed for 7 h. The reaction mixture is cooled and poured into crushed ice. The separated product is filtered, dried and recrystalised using ethanol. Similarly, the compounds 5b-e are prepared.

2-(4,5-Dihydro-3-phenyl-5-(thiophen-2-yl)pyrazol-1-yl)-4-(4-methoxyphenyl)-6-(thiophen-2-yl)pyrimidine 5a:
Solid; (55%); IR (KBr) v (cm⁻¹): 1030 (C-O-C), 2923 (CH); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.19 (t, 1H, CH), 2.78 (d, 2H, CH₂), 6.92-7.94 (m, 16H, Ar H), 3.88 (s, 3H, OCH₃); Elemental analysis: Calculated (%) for C₂₈H₂₂N₄O₂S: C, 67.87; H, 4.44; N, 11.31; Found: C, 67.53; H, 4.59; N, 11.42; MS: m/z 495.

2-(4,5-Dihydro-3-phenyl-5-(thiophen-2-yl)pyrazol-1-yl)-4-phenyl-6-(thiophen-2-yl) pyrimidine 5b:
Solid; (46%); IR (KBr) v (cm⁻¹): 2890 (CH); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.19 (t, 1H, CH), 2.78 (d, 2H, CH₂), 6.90-8.10 (m, 17H, Ar H); Elemental analysis: Calculated (%) for C₂₇H₂₀N₄S₂: C, 69.67; H, 4.30; N, 12.04; Found: C, 69.46; H, 4.32; N, 12.41; MS: m/z 465.

4-(4-Chlorophenyl)-2-(4,5-dihydro-3-phenyl-5-(thiophen-2-yl)pyrazol-1-yl)-6-(thiophene-2-yl)pyrimidine 5c:
Solid; (69%); IR (KBr) v (cm⁻¹): 790 (C-Cl), 2923 (CH); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.19 (t, 1H, CH), 2.78 (d, 2H, CH₂), 6.81-7.85 (m, 8H, Ar H); Elemental analysis: Calculated (%) for C₂₇H₂₉ClN₄S₂: C, 64.92; H, 5.81; N, 11.22; Found: C, 64.75; H, 5.74; N, 11.20; MS: m/z 499.
2-Chloro-3-(2-(4,5-dihydro-3-phenyl-5-(thiophen-2-yl)pyrazol-1-yl)-6-(thiophene-2-yl)pyrimidine-4-yl)quinoline 5d:
Solid; (64%); IR (KBr) v (cm\(^{-1}\)): 787 (C-Cl), 1605 (C=N); \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ (ppm): 2.19 (t, 1H, CH), 2.78 (d, 2H, CH\(_2\)), 7.11-8.20 (m, 17H, Ar H); Elemental analysis: Calculated (%) for C\(_{30}\)H\(_{20}\)ClN\(_5\)S\(_2\): C, 65.45; H, 3.63; N, 12.72; Found: C, 65.36; H, 3.35; N, 12.67; MS: m/z 550.

2-(4,5-Dihydro-3-phenyl-5-(thiophen-2-yl)pyrazol-1-yl)-4-(4-phenoxyphenyl)-6-(thiophene-2-yl)pyrimidine 5e:
Solid; (68%); IR (KBr) v (cm\(^{-1}\)): 1623 (C=N); \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ (ppm): 2.19 (t, 1H, CH), 2.78 (d, 2H, CH\(_2\)), 6.90-8.42 (m, 21H, Ar H); Elemental analysis: Calculated (%) for C\(_{33}\)H\(_{24}\)N\(_4\)O\(_2\)S\(_2\): C, 71.09; H, 4.30; N, 10.05; Found: C, 71.22; H, 4.40; N, 10.52; MS: m/z 557.

Preparation of Ethyl-5-amino-1-[4-(4-methoxyphenyl)-6-(thiophen-2-yl)pyrimidin-2-yl]-1H-pyrazole-4-carboxylate 6a:
A mixture of 2-hydrazinyl-4-(4-methoxyphenyl)-6-(thiophen-2-yl) pyrimidine 4a (2.98 g, 0.01 mol) and ethyl (2Z)-2-cyano-3-ethoxyprop-2-enolate (1.7 g, 0.01 mol) in ethanol (15 mL) is refluxed for 6 h. The completion of the mixture is monitored by TLC. The excess of solvent is removed through distillation under reduced pressure and the reaction mixture was added to crushed ice with stirring. The product that separated is filtered, washed with water, dried and recrystallised from DMF. Similarly, the compounds 6b-e are prepared.

Ethyl-5-amino-1-[4-(4-methoxyphenyl)-6-(thiophen-2-yl)pyrimidin-2-yl]-1H-pyrazole-4-carboxylate 6a:
Solid; (72%); IR (KBr) v (cm\(^{-1}\)): 3309 (NH), 1090 (C-O-C), 1725 (C=O); \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ (ppm): 1.33 (t, 3H, CH\(_3\)), 4.32 (q, 2H, CH\(_2\)), 4.92 (s, 2H, NH\(_2\)), 7.19-7.95 (m, 9H, Ar H), 3.92 (s, 3H, OCH\(_3\)); Elemental analysis: Calculated (%) for C\(_{20}\)H\(_{19}\)N\(_5\)O\(_3\)S: C, 57.07; H, 4.51; N, 16.62; Found: C, 57.23; H, 4.59; N, 16.85; MS: m/z 421.

Ethyl-5-amino-1-[4-phenyl-6-(thiophen-2-yl)pyrimidin-2-yl]-1H-pyrazole-4-carboxylate 6b:
Solid; (61%); IR (KBr) v (cm\(^{-1}\)): 3320 (NH), 1765 (C=O); \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ (ppm): 1.38 (t, 3H, CH\(_3\)), 4.30 (q, 2H, CH\(_2\)), 4.98 (s, 2H, NH\(_2\)), 6.94-7.90 (m, 10H, Ar H); Elemental analysis: Calculated (%) for C\(_{20}\)H\(_{17}\)N\(_5\)O\(_2\)S: C, 61.38; H, 4.34; N, 17.90; Found: C, 61.55; H, 4.49; N, 17.54; MS: m/z 391.

Ethyl-5-amino-1-[4-(4-chlorophenyl)-6-(thiophen-2-yl)pyrimidin-2-yl]-1H-pyrazole-4-carboxylate 6c:
Solid; (65%); IR (KBr) v (cm\(^{-1}\)): 3295 (NH), 775 (C-Cl), 1760 (C=O); \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ (ppm): 1.30 (t, 3H, CH\(_3\)), 4.39 (q, 2H, CH\(_2\)), 5.02 (s, 2H, NH\(_2\)), 6.95-7.77 (m, 9H, Ar H); Elemental analysis: Calculated (%) for C\(_{20}\)H\(_{16}\)ClN\(_5\)O\(_2\)S: C, 56.33; H, 3.75; N, 16.43; Found: C, 56.18; H, 3.57; N, 16.44; MS: m/z 426.

Ethyl-5-amino-1-[4-(2-chloroquinolin-3-yl)-6-(thiophen-2-yl)pyrimidin-2-yl]-1H-pyrazole-4-carboxylate 6d:
Solid; (63%); IR (KBr) v (cm\(^{-1}\)): 3270 (NH), 1750 (C=O); \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ (ppm): 1.36 (t, 3H, CH\(_3\)), 4.33 (q, 2H, CH\(_2\)), 4.95 (s, 2H, NH\(_2\)), 7.21-8.38 (m, 10H, Ar H), 3.78 (s, 3H,
OCH<sub>3</sub>); Elemental analysis: Calculated (%) for C<sub>23</sub>H<sub>17</sub>ClN<sub>2</sub>O<sub>2</sub>: C, 57.86; H, 3.56; N, 5.87; Found: C, 57.30; H, 3.34; N, 5.60; MS: m/z 477.

**Ethyl-5-amino-1-(4-(4-phenoxyphenyl)-6-(thiophen-2-yl)pyrimidin-2-yl)-1H-pyrazole-4-carboxylate 6e:**
Solid; (80%); IR (KBr) ν (cm<sup>-1</sup>): 3180 (NH), 1775 (C=O); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ (ppm): 1.39 (t, 3H, CH<sub>3</sub>), 4.42 (q, 2H, CH<sub>2</sub>), 4.83 (s, 2H, NH<sub>2</sub>), 6.90-7.75 (m, 14H, Ar H); Elemental analysis: Calculated (%) for C<sub>26</sub>H<sub>21</sub>N<sub>5</sub>O<sub>3</sub>S: C, 64.59; H, 4.34; N, 14.49; Found: C, 64.22; H, 4.40; N, 14.52; MS: m/z 483.

**Preparation of 7-(4-methoxyphenyl)-3-methyl-5-(thiophen-2-yl)[1,2,4]triazolo[4,3-a]pyrimidine 7a:**
A mixture of 2-hydrazinyl-4-(4-methoxyphenyl)-6-(thiophen-2-yl) pyrimidine 4a (2.98 g, 0.01 mol) and acetic anhydride 3 mL in catalytic amount of concentrated sulphuric acid is refluxed for 7 h. The completion of the mixture is monitored by TLC. The reaction mixture is added to crushed ice with stirring. The product that separated is filtered, washed with water, dried and recrystallised from DMF. Similarly, the compounds 7b-e are prepared.

**7-(4-Methoxyphenyl)-3-methyl-5-(thiophen-2-yl)[1,2,4]triazolo[4,3-a]pyrimidine 7a:**
Solid; (64%); IR (KBr) ν (cm<sup>-1</sup>): 1510(C=N), 1046 (C-O-C); <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>) δ (ppm): 2.33 (s, 3H, CH<sub>3</sub>), 7.25-8.28 (m, 8H, Ar H), 3.87 (s, 3H, OCH<sub>3</sub>); Elemental analysis: Calculated (%) for C<sub>17</sub>H<sub>14</sub>N<sub>4</sub>O: C, 63.35; H, 4.34; N, 17.39; Found: C, 63.20; H, 4.37; N, 17.28; MS: m/z 322.

**3-Methyl-7-phenyl-5-(thiophen-2-yl)[1,2,4]triazolo[4,3-a]pyrimidine 7b:**
Solid; (47%); IR (KBr) ν (cm<sup>-1</sup>): 1605 (C=N); <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>) δ (ppm): 2.49 (s, 3H, CH<sub>3</sub>), 7.73-9.05 (m, 9H, Ar H); Elemental analysis: Calculated (%) for C<sub>18</sub>H<sub>12</sub>N<sub>4</sub>S: C, 73.97; H, 4.10; N, 19.17; Found: C, 73.93; H, 4.09; N, 19.19; MS: m/z 292.

**7-(4-Chlorophenyl)-3-methyl-5-(thiophen-2-yl)[1,2,4]triazolo[4,3-a]pyrimidine 7c:**
Solid; (53%); IR (KBr) ν (cm<sup>-1</sup>): 1524 (C=N), 780 (C-Cl); <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>) δ (ppm): 2.88 (s, 3H, CH<sub>3</sub>), 7.02-8.15 (m, 8H, Ar H); Elemental analysis: Calculated (%) for C<sub>16</sub>H<sub>11</sub>ClN<sub>4</sub>S: C, 58.71; H, 3.36; N, 17.12; Found: C, 58.75; H, 3.39; N, 17.20; MS: m/z 327.

**2-Chloro-3-[3-methyl-5-(thiophen-2-yl)[1,2,4]triazolo[4,3-a]pyrimidin-7-yl]quinoline 7d:**
Solid; (42%); IR (KBr) ν (cm<sup>-1</sup>): 1645 (C=N); <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>) δ (ppm): 2.33 (s, 3H, CH<sub>3</sub>), 7.10-8.25 (m, 9H, Ar H); Elemental analysis: Calculated (%) for C<sub>19</sub>H<sub>12</sub>ClN<sub>5</sub>S: C, 60.31; H, 3.17; N, 18.51; Found: C, 60.38; H, 3.50; N, 18.69; MS: m/z 378.

**3-Methyl-7-(4-phenoxyphenyl)-5-(thiophen-2-yl)[1,2,4]triazolo[4,3-a]pyrimidine 7e:**
Solid; (60%); IR (KBr) ν (cm<sup>-1</sup>): 1620 (C=N); <sup>1</sup>H NMR (400 MHz, DMSO-D<sub>6</sub>) δ (ppm): 2.62 (s, 3H, CH<sub>3</sub>), 6.62-8.25 (m, 13H, Ar H); Elemental analysis: Calculated (%) for C<sub>22</sub>H<sub>16</sub>N<sub>4</sub>O: C, 68.75; H, 4.16; N, 14.58; Found: C, 68.73; H, 4.24; N, 14.50; MS: m/z 384.
Biological activities:

Antibacterial activity:

The antibacterial activity of selected synthesised compounds was studied by cup-plate method and the results are compared with standard antibiotics, Chloramphenicol using two Gram +ve organisms - *Staphylococcus aureus* and *Bacillus subtilis* and two Gram -ve organisms namely, *Escherichia coli* and *S. Paratyphi-A*. The compounds were tested at 40 µg/mL concentration. Some of the compounds were found to show potent activity against bacteria. The zone of inhibition was presented in table-1.

Antioxidant activity:

The antioxidant activity of selected synthesised compounds was tested by DPPH scavenging method. DPPH 0.002% in methanol was used as the free radical. The optical density was measured at 517 nm using UV-Visible spectrophotometer. The absorbance of the DPPH control was also noted. The scavenging activity of the compounds against the stable DPPH was calculated using the equation: Scavenging activity (%) = (A – B) / A X 100, where ‘A’ was the absorbance of DPPH solution and ‘B’ was the absorbance of DPPH solution with compounds. The results were shown in table-2.

### Table-1 Antibacterial activity of the synthesised compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th><em>Staphylococcus aureus</em></th>
<th><em>Escherichia coli</em></th>
<th>S. Paratyphi-A</th>
<th><em>Bacillus Subtilis</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>5b</td>
<td>15</td>
<td>13</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>5c</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>6a</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>6b</td>
<td>14</td>
<td>11</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>6c</td>
<td>11</td>
<td>12</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>7a</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>7b</td>
<td>16</td>
<td>15</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>7c</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>DMF</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>24</td>
<td>20</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>
Table-2 Antioxidant activity of synthesised compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Scavenging activity of different concentrations (µg/mL) of compounds %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>5a</td>
<td>50.33</td>
</tr>
<tr>
<td>5b</td>
<td>51.13</td>
</tr>
<tr>
<td>5c</td>
<td>50.67</td>
</tr>
<tr>
<td>6a</td>
<td>53.40</td>
</tr>
<tr>
<td>6b</td>
<td>53.29</td>
</tr>
<tr>
<td>6c</td>
<td>54.08</td>
</tr>
<tr>
<td>7a</td>
<td>52.47</td>
</tr>
<tr>
<td>7b</td>
<td>53.76</td>
</tr>
<tr>
<td>7c</td>
<td>51.86</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>80.30</td>
</tr>
</tbody>
</table>

Conclusion:
The research work is focussed on the synthesis of polynuclear pyrimidines with good yield and potent activity. The reactions performed are eco-friendly. The publication of these facts would be of significant use for the scientific community.

Acknowledgement:
Authors are thankful to the Principal and Chairman, Sahyadri Science College (Autonomous) for providing necessary laboratory facilities.

References:

iii. Ghorab M.M; Imail Z.Z; Abdel-Gawad and Abdel Aziem, Heteroatom Chemistry, 2004, 15, 57.


Received on September 23, 2014.